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A problem which must be dealt with by any reasonably general computer simulation of the 
cognitive processes underlying natural language dialogue behaviour is the inherent fuzziness of natural 
language and human thought. Artificial Intelligence (AI) research has to date achieved nothing 
approaching a general formal treatment covering all aspects of fuzziness. Surveys of AI approaches to 
the problems of vagueness can be found in WAHLSTER (1977) and PRADE (1979). 
 
 

1. THE TREATMENT OF FUZZINESS IN AI SYSTEMS 
In most of the natural language AI systems implemented to date, the problem of fuzziness is not 

taken into account. WINOGRAD, for example, in his pioneering work on the SHRDLU system, 
employs the following representation of the meaning of the word 'millionaire' (WINOGRAD, 1972: 
148): 
 
 (THGOAL (#POSSESS $?X1 $1,000,000)) 
 
A person who possesses $999,999 is thus not acknowledged by the system to be a millionaire; by 
contrast, the definition underlying our everyday use of the word stipulates vaguely that a millionaire 
must possess at least approximately a million dollars. 

Most of the contributions of AI research to the problems of vagueness have come from the areas 
problem solving and expert systems. Special inference mechanisms have been developed for what has 
variously been referred to as 'fuzzy reasoning', 'common-sense reasoning', 'plausible reasoning', 
'approximate reasoning', 'probabilistic reasoning', 'speculative reasoning', and 'vague reasoning'. 

The linguistic capabilities corresponding to these cognitive capabilities have, however, received 
very limited attention in such systems as MYCIN (SHORTLIFFE 1976) and PROSPECTOR (HART/ 
DUDA 1977). In MYCIN, for instance, the uncertainty involved in the various steps of the diagnosis 
is skillfully taken into account by the model which underlies the system's reasoning. But this 
uncertainty is reflected linguistically only in the way in which conclusions are qualified, with 
formulations such as 'There is strongly suggestive evidence that... ' and 'There is weakly suggestive 
evidence that...' (SHORTLIFFE, 1976: 99). 

From the beginning of our work on the dialogue system HAM-RPM, which converses with a 
human partner in colloquial German about limited, but interchangeable scenes, we have attempted to 
deal with vagueness (WAHLSTER/v. HAHN 1976) on three levels, giving each level approximately 
equal emphasis: Vague utterances are analysed and generated; the intervening reasoning is often 
fuzzy, as is the data on which it operates. 

The LISP-embedded PLANNER-type programming language FUZZY (LeFAIVRE 1977) has 
proved to be a powerful implementation tool for programs which require facilities for the concise 
representation and high-level but efficient manipulation of fuzzy knowledge. 

Figure 1 indicates some components of a dialogue system in which fuzziness can play a role. All of 
the processes and representation structures mentioned in Figure 1 have been realized to a certain 
degree in HAM-RPM, in some cases only in an extremely simplified form. 

In the second part of this paper, examples exhibiting the corresponding capabilities of HAM-RPM 
will be discussed. In the third part of the paper, we shall present a new corroboration procedure for 
multiple derivations within the framework of a many-sorted fuzzy logic, define the associated 
derivation rules, and give an example of a possible application of this calculus in a natural language 
dialogue system. 
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Fig. 1: Fuzziness in various components of a dialogue system 

 
An informal discussion of some of the communicative and cognitive functions of vagueness will 

provide a framework within which the capabilities of HAM-RPM to be discussed in the next part of 
the paper can be evaluated appropriately. In particular, it will become clear that, although fuzziness is 
reflected more extensively in HAM-RPM than in most comparable AI systems, some of the most 
important functions of vagueness are neglected in the present version of the system. 

1.1. SOME COMMUNICATIVE AND COGNITIVE FUNCTIONS OF VAGUENESS 

If we assume the notion of the preciseness of an expression to be a relative concept, we can say that 
the expression A 'John earns about $30,000 a year' is more precise than the expression B 'John earns a 
lot of money'. Similarly, if we consider the inverse relation 'vaguer than', we can say that B is vaguer 
than A. According to EIKMEYER and RIESER (1978: 25), we may call a given expression X precise 
if and only if there exists no expression Y which is more precise than X. A consequence of this 
definition is that there are many expressions for which no corresponding precise expression exists (cf. 
WAHLSTER, 1977: 34). For A and B, however, the expression 'John makes $31,263,75 a year' would 
be considered a corresponding precise expression. 
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B
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Fig. 2: Translations which change the degree of precision 
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Figure 2 shows some of the translations between the expressions A and B that might occur during the 
analysis and generation of utterances. Id is the identity mapping. If only Id is used during analysis, the 
information input is stored without alteration in the knowledge base. If Id is used during generation, 
the information returned by the answering routines is output without any change in its degree of 
fuzziness. This is the only sort of behaviour which is possible for traditional information systems. 

By contrast, human speakers typically recode information in a variety of ways during the analysis 
and generation of utterances, some of these transformations involving changes in the degree of 
fuzziness. 

During analysis, relatively precise statements are often translated into less precise ones which are 
easier to remember (V1 in Figure 2). Such translations depend heavily on standards which may vary 
from person to person. For example, if the sentence 'It was 11:45 P.M. and he was driving 85mph' is 
read within a long text, it is likely to be encoded as 'It was late at night, and he was driving very fast'. 

The arrow R in Figure 2 represents a kind of 'intelligent garbage collecting', which though 
potentially useful has not, to my knowledge, appeared in any AI program. 

The translation of a relatively vague to a relatively precise assertion (B1 in Figure 2) with the help 
of general inference rules is also possible. Default reasoning (REITER 1978) provides an example of 
this sort of reasoning. Such translations, which involve a high degree of uncertainty, are necessary 
when inferences presuppose a certain degree of precision. For example, if I wish to estimate the annual 
income of the married couple John and Mary, and I have the precise figure of $18,203.50 a year for 
Mary, but only B for John, I must use my general knowledge to translate B into something like A, so 
as to be able to arrive at the estimate of 'roughly $50,000 a year' for the two together. 

When utterances are generated, relatively precise stored values are frequently mapped onto less 
precise values (V2 in Figure 2). The function of this sort of transformation can be understood in the 
light of GRICE's (1975) conversational maxim 'Don't make your contribution more informative than is 
required'. 

V2 also plays a key role in intentional exaggeration and understatement, which usually require the 
use of vague terms. This particular use of vagueness can only be meaningfully simulated if the 
computer program assumes the role of a dialogue partner whose goals are different from the 
unqualified desire to be helpful which guides the behaviour of most dialogue systems including the 
present version of HAM-RPM. In the research group 'Simulation of Language Understanding' we are 
at present investigating this function of vagueness using the example of a room-booking dialogue: The 
program simulates a hotel manager who is anxious to rent one of his rooms. If the 'caller' asks how 
large the room is, and the manager knows perfectly well that the dimensions are 9 by 15 feet, he may 
prefer to express himself vaguely and exaggerate somewhat, saying that the room is 'quite large'. One 
reason why vague expressions are more suitable for this sort of thing than more precise ones e.g. 'The 
room is 11 by 18 feet', is that their use is less likely to result in negative sanctions: if challenged, the 
speaker can, in effect, appeal to individual differences in standards ('I consider this room to be quite 
large'). 

The arrow B2 in Figure 2 represents a translation for output of a relatively vague assertion into a 
more precise one, often on the basis of more general beliefs. One use of such translations is to lend 
added weight to claims by giving the impression that the speaker has more detailed knowledge of his 
subject than he actually has: 'This pain-killer is 34.6% more effective than its rival'. 

Since the ultimate goal of AI research in natural language understanding is a computer model of all 
of the cognitive processes which underlie intelligent dialogue behaviour, all of the mappings indicated 
in Figure 2 will have to be dealt with. Before models which can do justice to the various functions of 
these mappings can be constructed, much research will have to be done into the computer modelling of 
goal-driven understanding, memory organization, and speech-act planning. 

1.2. PUTTING VAGUENESS TO PRACTICAL USE 

On the other hand, some of the techniques which are already implemented in HAM-RPM to handle 
the analysis and generation of vague utterances and to represent vague knowledge could be put to 
practical use: Their incorporation in such application-oriented natural language interfaces as those 
described in WALTZ (1977) would increase the flexibility of these systems and their convenience for 
users. Consider the following five examples of possible applications: 
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• For reasons of data security the system could generate answers with varying degrees of precision,
 dependent on the status of the user. 
• When a precise answer would require too much computing time, the system could quickly produce
 a vague answer. 
• The user could include vague expressions in his requests; the system could interpret them in terms
 of the precise values in the data base. 
• When the system lacked the information required to produce a precise answer, it might be able to
 arrive at a conjecture on the basis of fuzzy reasoning; this would at least be more helpful than the
 response 'I don't know'. 
• The system could use vague expressions to keep its own utterances free of superfluous information. 
 
These introductory remarks make it clear that vagueness must not be viewed as a defect of colloquial 
language which is - and should be - absent in formal query languages; on the contrary, vagueness can 
significantly increase efficiency of communication between man and machine. 

2. SOME REFLECTIONS OF FUZZINESS IN HAM-RPM 
The representation of fuzzy knowledge in HAM-RPM (a detailed description of HAM-RPM's 

knowledge base can be found in v. HAHN et al. 1980) relies heavily on FUZZY's assertional data 
base, whose entries have the form 

 
(1) ((D APPLE/ JUICE SWEET). 0.7). 
 

The left-hand side is an arbitrary list structure. In (1) it is interpreted by HAM-RPM as ascribing 
sweetness to apple juice. The number on the right is the 'z-value': each assertion in the data base is 
modified by a z-value, usually in the range [0, 1] ⊂ |R . The z-values are interpreted by HAM-RPM in 
various ways, depending on the context and the processes which make use of the assertion in question. 
For (1), the interpretation is in terms of frequency: apple juice is usually sweet. 

FUZZY's assertional data base is used to represent HAM-RPM's two semantic networks. The 
referential semantic network, which contains extensional information about the scene being discussed, 
is complemented by the conceptual semantic network, which contains intensional information relevant 
to the scene. 

All of the arcs in the two semantic networks can be fuzzified. For example, the following two 
assertions from the conceptual semantic network represent the knowledge that a tree usually has 
branches, and that, more often than not, it has many branches: 

 
(2) ((T TREE BRANCH). 0.8) 
 
(3) ((NUMBER (T TREE BRANCH) MANY). 0.6) 
 

The T-arc links part-concepts to whole-concepts, while the NUMBER-arc is used to represent the 
number of parts of a particular sort associated with a whole-concept. As can be seen in (3), fuzzy 
natural language quantifiers (cf. ZADEH 1978) like 'many' are sometimes used directly in the 
representation language. 

2.1. LINGUISTIC HEDGES AND FUZZY SPATIAL RELATIONS 

The present version of HAM-RPM uses procedural definitions of 23 linguistic hedges. These 
hedges may either be recognized within the input and mapped onto assertions in the knowledge base 
(TRANSLATION1 in Figure 1), or used by the system to qualify its own utterances (TRANSLATION 
in Figure 1). The following exerpts from actual dialogues conducted with HAM-RPM will illustrate 
ways of dealing with these linguistic hedges. 
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Here are some examples of the generation of hedges: 
 
(4) WIEVIELE BEINE HAT EIN MENSCH? 

How many legs does a human being have? 
 
FAST IMMER ZWEI.  
Almost always two. 
 

(5) UND EIN STUHL? WIEVIEL BEINE HAT DER? 
And a chair? How many legs does it have? 
 
NORMALERWEISE VIER.  
Usually four. 
 

(6) UND DIESER KAPUTTE STUHL?  
and this damaged chair here? 
 
NUR DREI.  
Only three. 
 

The information requested in (4) and (5) is obtained from the conceptual semantic network, where it is 
either retrieved directly or derived with the help of general rules. The z-values which modify the 
answer are then mapped onto appropriate linguistic hedges. 

In the case of (6), it is the referential semantic network which contains the desired information. 
Since the value found there differs from the standard value stored in the conceptual semantic network, 
the adverb 'only' is used to modify the answer (The algorithms underlying this behaviour were 
designed by W. HOEPPNER). 

Another class of adverbs, including words like 'directly' and 'roughly', is used within HAM-RPM to 
fuzzify or defuzzify expressions used to describe spatial relations. 

 
(7) STEHT DAS FERNSEHGERÄT EIGENTLICH DIREKT LINKS NEBEN DER LAMPE, 

WELCHE SICH RECHTS NEBEN IHM BEFINDET? 
Is the TV set in fact standing directly to the left of the lamp which is to its right? 
 

When the question (7) is analysed, the vague spatial relation 'to the right of is used to determine which 
lamp is meant. Then the positions of the TV set and the lamp are compared to determine whether they 
satisfy the relation 'directly to the left of'. Note that the hedge 'directly' increases the precision of this 
expression, in the sense that the range of possible configurations of the two objects is narrower (The 
spatial-relations component of HAM-RPM was designed by A. JAMESON). 

The system also uses hedges to modify spatial relations. The following noun phrase identifies the 
object 'ARMCHAIR4' uniquely within one of HAM-RPM's domains, a living-room scene: 
 

(8) DER HINTERE, BRAUNE SESSEL, DER SICH UNGEFÄHR RECHTS VON DEM 
MITTLEREN ROTEN BILD BEFINDET.  
The rear brown armchair which is located roughly to the right of the middle red picture. 
 

In this example the spatial relations 'rear' and 'middle' are used to distinguish the two objects from 
other objects in their immediate neighbourhoods which have exactly the same properties (cf. 
WAHLSTER et al. 1979): there is a group of brown armchairs and a group of red pictures. 

The translation of z-values into linguistic hedges in HAM-RPM is context-dependent, the 
following two factors being taken into account: 

 
• The nature of the predicate modified by the z-value  
• The knowledge source which supplied the information expressed in the modified 

predication 
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Consideration of the first factor is necessary to ensure, for example, that (BEHIND 0.2) is verbalised 
as 'roughly behind', but (DAMAGED 0.2) as 'slightly damaged'.  

Here is an example of the influence of the second factor: (EXPENSIVE 0.6) is expressed either as 
'rather expensive' or 'often expensive', depending on whether the corresponding assertion was retrieved 
from the referential or from the conceptual semantic network. 

2.2. REPRESENTING THE REFERENTIAL MEANING OF RELATIVE ADJECTIVES 

The use of a relative adjective such as 'old', 'big' or 'narrow' always involves a comparison with a 
standard. The particular standard used depends on the type of object being described and on other 
contextual factors. The applicability of such predicates is typically a matter of degree. 

The referential meaning of 'big' for the reference set 'trees' is encoded in HAM-RPM in the 
following FUZZY procedure, which is invoked when the system needs to determine whether a 
particular tree is big or not. 

 
(9a) (PROC (REF _>TREE BIG) 
(9b) (FETCH (REF !TREE ?HEIGHTVALUE INST HEIGHT)) 
(9c) (SUCCEED (REF !TREE BIG) (SFUNK !HEIGHTVALUE 10 20))) 
 

Suppose that the assertion (10), which states that the height of TREE3 is about 15 meters, is stored in 
the referential semantic network. 
 

(10) ((REF TREE3 15 INST HEIGHT) . 0.8)  
 

When called upon to answer the question about this tree 
 

(12) IST DER BAUM, DER RECHTS NEBEN DER AMPEL STEHT, GROSS?    
  Is the tree which is next to the traffic light big? 
 

the system will attempt with the help of the procedure (9), to derive the assertion (REF TREE3 BIG) 
with a z-value of at least 0.2. The variable _>TREE in (9a) is implicitly typed, so that it can only be 
bound to names of objects of the type TREE (typed variables will be discussed in more detail in the 
next section). Line (9b) calls for the retrieval of the assertion (10) from the referential semantic 
network. Line (9c) provides for the 'bigness' of TREE3 to be computed using the standard function 
SFUNK (introduced by Zadeh). The standard size of trees is encoded in the second and third 
arguments to SFUNK. 

The invocation of (9) with the argument TREE3 thus yields the assertion ((REF TREE3 BIG) . 
0.5), which permits the question (12) to be answered in the affirmative. 

There are several other modules of HAM-RPM in which fuzziness plays an important role, but this 
section will conclude with a brief mention of only one of them: The set of all previously mentioned 
objects which are considered to be of current relevance in the dialogue is represented as a fuzzy set. 
The degree of current relevance of an object is taken into account by the system in several contexts. 
For example, when the dialogue partner uses a pronoun which has more than one possible antecedent, 
it is sometimes safe to assume that the object with the greater current relevance was the one he had in 
mind. 

3. A NEW APPROACH TO APPROXIMATE REASONING IN A MANY-SORTED
 FUZZY LOGIC 

It is often easy to modify non-fuzzy representation structures and algorithms so that they can 
handle degrees of variation. The more interesting problems of fuzziness, on the other hand, require a 
more radical treatment, including the development of new algorithms and control structures. 

The new approach to the formal reconstruction of approximate reasoning processes to be described 
in this section is an example of such a treatment. The following four properties characterize our model 
of fuzzy inference processes:  
• A fuzzy inference rule represents a weak implication; a particular 'implication strength' must thus 
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be associated with each such rule. 
• The premisses of a fuzzy inference rule are often fulfilled only to a certain degree. 
• The applicability of a fuzzy inference rule in the derivation of a particular conclusion is likewise a 

matter of degree. 
• Several mutually independent fuzzy inference rules can corroborate each other in the derivation of 

a particular conclusion. 
 
Before these properties can be elucidated with the help of examples, the concepts 'implicitly typed 
variable' and 'fuzzy matching' must be defined. 

3.1. FUZZILY SORTED VARIABLES AND FUZZY MATCHING 

Pattern matching usually results in the binding of certain variables which appear in the pattern. The 
evaluation of (13), for example, causes the variable LUXURY/ CAR to be assigned the value VW/ 
BUG1. Simple shove variables are 

 
(13) (MATCH (?LUXURY/ CAR IS EXPENSIVE) (VW/ BUG1 IS EXPENSIVE)) 
 

prefixed in FUZZY with a question mark. In (13) the variable name 'LUXURY/ CAR' is arbitrary, in 
no way restricting the class of values that may be assigned to the variable. If we want the match in (13) 
to fail on the grounds that a VW bug is not a luxury car, we must make LUXURY/ CAR into a typed 
variable. (What are called 'types' in computer science are not types in the sense of mathematical logic, 
but only sorts. These two terms will be used interchangeable in the following). 

The relation ISA is used to introduce sort identifiers: 
 
(14) ((ISA CADILLAC123 LUXURY/ CAR). 1)  
 

This assertion assigns the individual constant CADILLAC123 to the sort 'LUXURY/ CAR'. We have 
extended FUZZY's pattern matcher to permit the representation of typed variables as follows: If the 
name of a sort such as 'LUXURY/ CAR' is prefixed with the characters '_>', it can be bound only to 
the individual constants of the corresponding sort. The match attempted in (15) will thus be 
unsuccessful, providing there is no assertion in the data base assigning VW/ BUG1 to the sort 
LUXURY/ CAR. 
 

(15) (MATCH (_>LUXURY/ CAR IS EXPENSIVE) (VW/ BUG1 IS EXPENSIVE)) 
 
This kind of variable-typing can be extended if relations between sorts are declared by means of 
assertions such as (16). In (16), 'AUTOMOBILE' is introduced as a superset of LUXURY/ CAR. 
 

(16) ((U AUTOMOBILE LUXURY/ CAR). 1) 
 

Such declarations create a hierarchy of types, and type-checking can involve a search through the 
hierarchy of types as well as direct retrieval. In (17), for example, the variable AUTOMOBILE is 
bound to 
 

(17) (MATCH (_>AUTOMOBILE CONSUMES GASOLINE) (CADILLAC123 
  CONSUMES GASOLINE)) 
 

CADILLAC123, because the system can use the assertions (14) and (16) to prove that CADILLAC123 
belongs to the sort 'AUTOMOBILE'. 

In the examples discussed so far, only one typed variable corresponding to a particular type has 
been used, but it is obvious that, in general, an arbitrary number of variables of a given type must be 
available. One way to achieve this is to allow integers to serve as suffixes in the names of typed 
variables, as in (18) (A more general approach to typed variables has been developed by BOLEY 
(1978) for the language FIT). 
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(18) (_>AUT0MOBILE1 IS MORE EXPENSIVE THAN _>AUTOMOBILE2) 

 
If we introduce fuzzy type declarations such as (19) it becomes evident that some sort of fuzzy 
matching is needed. The 
 

(19) ((ISA BUICK321 LUXURY/ CAR). 0.7) 
 

corresponding procedure - here called FMATCH - should return a value of 0.7 when (20) is executed, 
indicating that the match 
 

(20) (FMATCH (_>LUXURY/ CAR IS EXPENSIVE) (BUICK321 IS EXPENSIVE)) 
 

was successful only to a certain degree. Since a matching operation in which the pattern consists of 
several elements can be viewed as a conjunction of simpler matching operations the z-value returned 
by the more complex operation should be equal to the minimum of the z-value returned by the simpler 
operations. 

3.2. TWO DERIVATION RULES AND A CORROBORATION PROCEDURE 

Although a complete definition of the syntax of the many-sorted fuzzy logic used in this section is 
not possible here, the two derivation rules of the calculus will now be defined formally. 

Let  be a set of sort identifiers, and  the set of individual constants. We 
introduce a fuzzy sorting by defining for each 

{ nsssS ,...,, 21= } OFS
Ss∈  a characteristic function: 

 

 
 
Lower case t will be used to refer to terms, and will stand for the individual variables belonging to 
the sort . Let  be the set of well-formed formulas and  and 

isv
is FO A B be elements of . FO

We shall continue to use the neutral term 'z-value' to refer to the value  from the real 
interval [  associated with the formula A; epistemologically, this value can be interpreted as a fuzzy 
truth value, a possibility (ZADEH 1978), a measure of belief (SHORTLIFFE 1976), or an agreement 
probability (SCHEFE 1979), to mention but a few of the possible interpretations.  

( )AZVAL
]1,0

Since only a finite subset of the real numbers can be represented on a computer in any case, it is 
tempting to embed the calculus in a many-valued logic with a finite truth set. This would make it 
possible to apply the completeness and soundness results of MORGAN (1976) with only minor 
modifications. How can new formulas be derived from given formulas, and how are z-values to be 
assigned to the new formulas? The set of derivation rules { }21, RRR =  is defined as follows: 
 

(21)  
 
 
 
 
 

1R is called fuzzy modus ponens. 
 

(22)  
 
 
 
 
 

2R is called the fuzzy 
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subsitution rule; it was implemented in FUZZY by means of a change in the system procedure which 
controls the matching of calling patterns with the characteristic patterns of FUZZY procedures. 

The above derivation rules sometimes permit two derivations of the same formula B, using 
different axioms in the knowledge base. It remains to be specified how the z-values corresponding to 
the several derivations are to be combined to yield an overall z-value.  

Suppose there are k implications where each BABA
ka

k

a
⇒⇒ ,...,

1

1 [ ]1,0∈ia  denotes the corresponding 
implication strength. ZVAL(B) is computed via the following recursive formula, which is a 
generalization of Shortliffe's combining function 1 (SHORTLIFFE, 1976: 179): 

 
(23)  

 
 
While it would exceed the scope of this paper to justify (21), (22), and (23) and to compare them with 
the corresponding derivation rules and combining functions of other calculi, an extended example of 
their use should suffice to give the reader an intuitive appreciation of the model as a whole. An 
example was selected which will illustrate the four properties of the model mentioned above. 

3.3. MULTIPLE DERIVATIONS: AN EXAMPLE 

First suppose that the following two assertions, which assign the individual constant MERCEDES123 
to the sorts 'LUXURY/ CAR' and 'AUTOMOBILE' respectively, are stored in the data base: 
 

((ISA MERCEDES123 LUXURY/ CAR) . 0.8) 
((ISA MERCEDES123 AUTOMOBILE) . 1) 

 
The data base also contains the axioms A, B, and C, which represent the fuzzy knowledge that the 
Mercedes in question is used, rather old, and somewhat rusty.  
 

A = ((REF MERCEDES123 USED). 1)  
B = ((REF MERCEDES123 OLD). 0.5)  
C = ((REF MERCEDES123 RUSTY). 0.3) 

 
Two other axioms that the data base contains are the inference rules D and E, which represent 
common-sense knowledge: D states that an old, used luxury car is likely to be cheap, while E makes 
the same prediction for any rusty automobile. 
 

D =  (PROC DEMON: MDEMON ZVAL: '(0.4 0.7)  
(REF _>LUXURY/ CAR CHEAP)  
(GOAL (REF !LUXURY/ CAR OLD))  
(GOAL (REF !LUXURY/ CAR USED)) (END?)) 

 
E =  (PROC DEMON: MDEMON ZVAL: '(0.2 0.8)  

(REF _>AUTOMOBILE CHEAP)  
(GOAL (!AUTOMOBILE RUSTY)) 
(END?)) 

 
MDEMON is a control procedure specially designed for multiple derivations. It supervises the 
evaluation of the FUZZY procedures to which it is assigned, combining the z-values resulting from the 
various derivations in accordance with (23). The second of the pair of numbers occurring in the first 
line of D and E represents the implication strength of the inference rule. The implication strength of D 
is thus .7, that of E .8. 

The value of the two implicitly typed variables _>LUXURY/ CAR and _>AUTOMOBILE are 
referenced via a prefix '!'. We shall now use the derivation rules and the corroboration formula defined 
above to prove the following assertion: 
Assertion: {A, B, C, D, E}   ((REF MERCEDES 123 CHEAP). 0.4528) 
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Proof:  A) We first use , where 2R 1ϕ  = {MERCEDES123/_>LUXURY/ CAR} 

D1ϕ  = (PROC DEMON: MDEMON ZVAL: ' (0.4 0.56 [= 0.7⋅0.8]) 
(REF MERCEDES123 CHEAP) 
(GOAL (REF MERCEDES123 OLD)) 
(GOAL (REF MERCEDES123 USED)) 
(END?)) 
 

Because of the fuzzy pattern matching which is performed when D is invoked, the implication strength 
of D1ϕ  is weaker than that of D. This corresponds to the fact that the inference rule D is valid only for 
luxury cars, and MERCEDES123 can only be regarded as a luxury car to a certain degree. This 
illustrates the third of the four properties of the model listed above. 
 

B) We apply R1 and obtain { }DBA 1,, ϕ     F 
 

F = ((REF MERCEDES123 CHEAP) . 0.28 [= MIN(1, 0.5) ⋅ 0.56]) 
 

This illustrates the second property, since the premise that the car is old is only satisfied to a certain 
degree. It also illustrates the first property, as D1ϕ  is a weak inference rule. 
 

C) The step B) completes one derivation of the formula which was to be proven. We now seek 
a second derivation in order to corroborate the results of the first one. We first apply  once again, 
where 

2R
2ϕ  = {MERCEDES123/_>AUTOMOBILE} 
 

E2ϕ  =  (PROC DEMON: MDEMON ZVAL: '(0.2 0.8 [=1 ⋅ 0.8]) 
(REF MERCEDES 123 CHEAP) 
(GOAL (REF MERCEDES123 RUSTY)) 
(END?)) 
 

D) Applying  we then obtain 1R { }EC 2,ϕ     G 
G = ((REF MERCEDES123 CHEAP). 0.24 [= 0.3⋅0.8]) 

 
E) The combining function (23) now yields {F, G}     H 

H = ((REF MERCEDES123 CHEAP). 0.4528 [= 0.28 + 0.24 - 0.28 ⋅ 0.24]) 
 

This last step illustrates the fourth characteristic property of the model: two independent pieces of 
evidence combine to yield the desired z-value. 
The reconstruction of fuzzy inference processes described in this section has been implemented in a 
specially extended version of FUZZY. Its performance on a number of test examples has been 
satisfactory. 

In conclusion, it should be noted that the problem of incorporating such a model of fuzzy reasoning 
into a natural language dialogue system - such as HAM-RPM - is more difficult than it might appear to 
be at first glance. If the system draws unreliable conclusions such as the one in the above example 
while answering a question like 'Is that Mercedes cheap?', it is not enough for it to hedge its 
affirmative answer with an expression like 'I think so'. In many cases a dialogue partner will not be 
satisfied with such an answer unless the system can explain how it was derived ('Because it is used and 
rather old and ...'). One of the things that complicate the task of simulating such explanation of 
reasoning is the fact that the fuzziness enters into the reasoning in several different ways (cf. the four 
characteristic properties of the present model listed above, some of which are harder to verbalise 
colloquially than others). 
 
The explanation module which has been implemented within HAM-RPM (WAHLSTER et al. 19 79) 
represents an attempt to deal with some of these problems. 
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