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In this paper, we first explain why human-like
dialogue understanding is so difficult for artificial
intelligence (AI). We discuss various methods for
testing the understanding capabilities of dialogue
systems. Our review of the development of dialogue
systems over five decades focuses on the transition
from closed-domain to open-domain systems and
their extension to multi-modal, multi-party and multi-
lingual dialogues. From being somewhat of a niche
topic of AI research for the first 40 years, it has
made newspaper headlines in recent years and is
now being discussed by political leaders at events
such as the World Economic Forum in Davos.
We ask whether large language models are super-
parrots or a milestone towards human-like dialogue
understanding and how they relate to what we know
about language processing in the human brain. Using
ChatGPT as an example, we present some limitations
of this approach to dialogue systems. Finally, we
present some lessons learned from our 40 years
of research in this field about system architecture
principles: symmetric multi-modality, no presentation
without representation and anticipation feedback
loops. We conclude with a discussion of grand
challenges such as satisfying conversational maxims
and the European Language Equality Act through
massive digital multi-linguality—perhaps enabled by
interactive machine learning with human trainers.

This article is part of a discussion meeting issue
’Cognitive artificial intelligence’.

1. Introduction
Social interaction based on natural language dialogue
is one of the defining characteristics of our species.
Dialogues are written or spoken conversational exchan-
ges between two or more agents consisting of a coherent
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sequence of dialogue acts. The computer simulation of human dialogue behaviour is one of the
most ambitious scientific goals of this millennium. It requires multi-disciplinary collaboration of
experts in artificial intelligence (AI), computational linguistics (CL) and cognitive science.

(a) Human-like dialogue understanding is AI-complete
During the past 50 years, our understanding and simulations of the complex processes underlying
human dialogue behaviour have become more and more precise, so that today the ancient dream
of mankind, to be able to converse with things, is coming into reach.

However, human dialogue understanding is not an isolated capacity, but is embedded into
many other aspects of cognition. This means that many subfields of AI beyond natural language
understanding are relevant for achieving human-like dialogue behaviour: vision, reasoning,
planning, learning, plan recognition, user modelling, knowledge representation and robotics [1].

Therefore, we claim that dialogue understanding is AI-complete. Although a formal and
broadly accepted definition of AI-completeness does not yet exist, we strongly believe that an
AI system cannot achieve human-like dialogue behaviour without having many other cognitive
competences that are the basis for human intelligence. Our 40 years of experience in the realization
of dialogue systems has shown that, compared to human-like behaviour, our systems were often
limited by the lack of certain cognitive skills outside the narrower field of language processing,
such as sensing, reasoning, planning and acting.

This suggests a multi-disciplinary approach to cognitive AI for dialogue systems, which
uses theoretical claims and experimental insights from various neighbouring disciplines as
architectural constraints for computational models. These models generate new predictions that
can be tested by experiments. The resulting data can be used for new predictions and new
insights. During the past five decades of research about dialogue systems, results from the
following fields have had a significant impact on the AI-driven design of dialogue systems:
discourse research, interaction research, social psychology, emotion research, psycholinguistics,
neurolinguistics, neuropsychology and general cognitive science.

(b) Why is human-like dialogue understanding so difficult for artificial intelligence?
In the computer modelling of dialogue comprehension, the step-by-step reduction of
uncertainties in the interpretation of utterances represents the greatest challenge (figure 1). This
is already evident in the mapping of sound waves to words, since there is no one-to-one function
for this. For speaker-independent continuous speech recognition, the naïve approach of simply
creating a database of all spectra for all words of a language and then performing pattern
matching with the spectra of all words of the same language is not possible (see chapter 16 of
[2]). One and the same word, even if spoken by the same person, can be pronounced differently,
in different pitches and at different speeds, depending, for example, on the emotional state of the
speaker and the situation. In addition, there are large differences in pronunciation from person to
person, depending on gender, age and the mother tongue of the interlocutor. This high phonetic
variability of spoken language utterances must therefore be taken into account in statistical and
neural models. A complicating factor is that many people speak a dialect, resulting in a multitude
of further pronunciation variants that lead to interpretation uncertainties.

However, the greatest uncertainty for dialogue understanding systems arises from the many
types of ambiguity in natural language. For example, without further context, a statement such
as ‘We were on the phone with friends in Japan’ remains ambiguous, whether it means that
we telephoned in Japan with some friends or whether we called friends in Japan from another
country. Such ambiguity in the binding of a prepositional phrase like ‘in Japan’ is a typical
form of syntactic ambiguity that can only be resolved by consulting other sources of knowledge
in dialogue understanding. Particularly difficult and usually impossible without additional
knowledge of the world is the resolution of semantic ambiguities in the area of natural language
quantifiers and their scope, as is evident in the utterance ‘All students own a computer’, where it



3

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220049

...............................................................

utterance

re
du

ct
io

n 
of

 u
nc

er
ta

in
ty

100
alternatives

10
alternatives

speech recognition

language analysis

dialogue
under-

standing

What has the speaker
said?

What has the speaker
meant?

What does the speaker
want?

unambiguous
understanding in the

dialogue context

acoustic
language
models

large language
models

discourse and
user models

meaning
representation

communicative
intent

word lattice

Figure 1. Uncertainty reduction in dialogue: the cylinders symbolize models as data sources that are used on the three
processing levels. The triangle in the middle symbolizes the funnel created by the incremental reduction of interpretation
hypotheses outlined on the right.

is unclear whether a single computer belongs to all students or whether each student has his or
her own computer.

Since alternative interpretations accumulate through ambiguities across all levels of
processing, there is the danger of a combinatorial explosion of the hypotheses for the intended
meaning. This must be contained at an early stage by filtering out non-sensical combinations in
the dialogue context during the understanding process. If one adds the uncertainties outlined
above during speech recognition, the result is a flood of hypotheses that ultimately must be
reduced to a single representation of the intended meaning.

Other important sources of uncertainty are the semantic and pragmatic vagueness of many
utterances and the incompleteness of knowledge sources like the user models and the domain
model.

In more complex dialogue situations, it is quite common that a final decision about the
intended meaning of an utterance can only be made after a further sequence of subsequent
utterances has been understood, so that a kind of wait-and-see understanding strategy has to
be implemented by the dialogue system. This requires the possibility of storing underspecified
meaning representations in the discourse memory in order to allow inference and response
generation without having achieved full understanding, e.g. in the case of a cataphor as an
expression that co-refers with a later, more specific, expression in the discourse.

User: Any Volkswagen Beetle would do for me.
System: If you are more specific about the production date, I will present it to you.
User: The 1980 Beetle.

(c) Testing dialogue understanding through system reactions
AI systems for dialogue understanding extract the intended meaning of digital input data in a
given context, so that they can produce an output that is judged to be as an appropriate reaction
by the dialogue partner.
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Figure 2. Testing successful understanding: the ellipses on the left symbolize the different types of input data that an AI system
is supposed to understand. The ellipses on the right list the main tasks that can be used to validate correct understanding.

One of the simplest heuristics for testing the understanding of an utterance, which should be
understood as a request to an agent to perform an action, is to observe whether the appropriate
action is performed or not.

There are many other tasks for testing the successful understanding of the AI system that rely
on a human evaluator to judge the adequacy and validity of the systems output for a given input
(figure 2). If human evaluators judge that the communicative reaction of the dialogue system to
an input utterance is human-like in the given discourse context, then in a behaviouristic view
based on the observable behaviour of the AI system, it is postulated that the dialogue system has
‘understood’ the input. In a similar way, teachers test a student’s ‘understanding’ of a text based
on the adequacy of the student’s summary, paraphrase or translation of the input text.

Testing understanding by asking questions about the digital input was one of the first tasks
used as evidence for meaning comprehension already in the early days of NL interfaces to
databases (such as SIR [3]) and is still used for testing current systems like ChatGPT [4]. Today,
captioning images and videos with automatically generated natural language descriptions is
another popular understanding test.

The structure of the rest of this article is as follows. The next section analyses the development
of dialogue systems over the last five decades, using German-language systems as examples.
Section 3 discusses the role of large neural language models (LLMs) for the next generation of
dialogue systems. Finally, §4 presents two fundamental insights for the system architectures of
multi-modal dialogue systems and the most important research trends and challenges for the
next generation of dialogue systems.

There are many feature-based classifications of dialogue systems, such as task-oriented, goal-
oriented, plan-based, mixed-initiative, multi-modal, multi-party or multi-lingual, which are often
combined and overlap to varying degrees for a given implementation [2]). In §§2 and 3, we discuss
examples of dialogue systems, that show these characteristics in a wide range of combinations up
to the new generation of chatbots.

2. Five decades of natural language dialogue systems
Work on natural language dialogue systems has grown enormously and rapidly. Although there
were always some contributions on dialogue systems in the most important conferences on AI
and CL during the first 40 years, the topic has never been as central to the public discussion on AI
applications as it is today. From being a niche topic in the public press, chatbots have made it into
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Figure 3. The development of dialogue understanding systems in Germany from 1976 to 2026.

the best daily newspapers and are now even discussed at the World Economic Forum in Davos.
Since a complete review of the development of dialogue systems (but see [2,5,6]) and the insights
gained, in terms of both the breadth of architectures and the depth of methods, is impossible
within the page limits of this paper we will base the discussion on our own research experience
in this area of AI.

In the following, we illustrate the development of natural language dialogue systems using
examples drawn mainly from the author’s own project work as an AI researcher and/or a
principal investigator on many dialogue systems (figure 3) over the last 48 years.

(a) Early closed-domain dialogue systems
Already 51 years ago, Terry Winograd for his PhD thesis developed the SHRDLU system at MIT
[7]. It could answer simple questions, execute commands and accept information in an interactive
dialogue with a human user. The dialogues were semantically grounded in a microworld domain:
the famous BLOCKS world, which was also used in the early days of AI for research in vision and
robotics.

SHRDLU dealt in an integrated, but very simplified way with important aspects of language:
syntax, semantics and inference. The system included a parser, a recognition grammar of English,
programs for semantic analysis, and a very simple general reasoning and planning system.

It could remember and explain its plans and actions as well as carrying them out with a
simulated robot gripper in a CAD model of the BLOCKS world (figure 4). The user could follow
the actions of SHRDLU by direct observation in an animated graphical representation of the
domain of discourse. This allowed the user to verify SHRDLU’s understanding of his commands
and the ground truth behind the answers given by SHRDLU.

SHRDLU was a typical closed-domain dialogue system, which was based totally on symbolic
methods, with complete knowledge about the state of the microworld as its domain of discourse
and no machine learning components. It could ask clarification questions to the user, answer
follow-up and Why-questions, resolve anaphoric references (e.g. the pronoun resolution for ‘it’ in
figure 4) and point out incorrect presuppositions. As a demo the system was very impressive but
was not robust, scalable or general enough for realistic applications.

The next generation of closed-domain dialogue systems (e.g. our HAM-RPM system [8])
achieved a certain level of domain independence by a clear separation of specific knowledge
about a particular domain of discourse and the general knowledge and algorithms for its
discourse processsing components (HAM-RPM was tested in two completely different domains).
In contrast with SHRDLU, systems like HAM-RPM and TEAM [9] were designed for easy
transportability, so that they can be easily retargeted to other domains.
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Figure 4. SHRDLU dialogue about the BLOCKS microworld. (Online version in colour.)

But a general-purpose natural language dialogue system should be adaptable to applications
that differ not only with respect to the domain of discourse, but also to dialogue type, user
type and intended system behaviour. In [10], we call such systems, which are transportable and
adaptable to diverse conversational settings, ‘transmutable systems’. A first attempt to build a
transmutable system was our design of the experimental dialogue system HAM-ANS [11] whose
dialogue behaviour can be switched from a cooperative mode (e.g. the system answers questions
about a traffic scene) to a persuasive mode (e.g. the system tries to persuade the user to book a
room in a particular hotel).

Until the late 1980s, natural language dialogue systems were mainly based on typed input and
output. They were based on purely symbolic AI methods. These early systems used no machine
learning and no subsymbolic neural methods. Only since the first spoken language dialogue
systems evolved were statistical and neural methods used, mainly for speech analysis which was
viewed as a pattern recognition problem.

(b) The emergence of multi-modal and multi-lingual dialogue systems
Since the early 1990s, the research on dialogue understanding shifted from unimodal systems,
which only allow text or speech for input and output, to multi-modal systems, which allow the
freedom to combine all senses for interaction. Today, multi-modal dialogue systems combine
speech with gestures, eye- and head-gaze, facial expressions and many other aspects of body
language [12]. In many applications of dialogue systems like driver or worker assistance systems,
it turned out that multi-modal discourse in comparison to unimodal discourse is faster and
shorter, more robust, less ambiguous, more expressive and more coherent [13].

Two pioneering European projects for multi-modal dialogue systems were ALFRESCO and
XTRA. ALFRESCO [14] focused on the interactive exploration of multi-media information about
Italian frescoes. It promoted multi-modality by combining language, gestures and hypermedia,
coordinated through a coherent management of all types of communication acts. Our XTRA
system combined natural language and pointing in an intelligent user interface to an expert
system for tax advice. The relevant tax form is displayed on the screen so that the user can refer to
regions of the form by various tactile gestures, including different granularities, inexact pointing
and pars-pro-toto deixis [15,16]. After more than 30 years of successful research on multi-modal
dialogue systems, it is surprising to see that some of the latest systems such as ChatGPT, which
are most present in the public press, are still based on a very restricted communication channel,
based on a teletype paradigm similar to SMS interaction.

When seeing a series of TV pictures showing a part of a freeway where several hundred
vehicles are lined up one behind the other, each one moving forward only at a snail’s pace, we



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220049

...............................................................

can sum up the scene with the expression ‘traffic-jam’. This is a typical example of a large class
of situations that can be described with the statement ‘one word says more than a thousand
pictures’—a reversal of the classical saying [17]. VITRA (Visual Translator) is one of the first
systems, which is perceptually grounded since all discourse objects are linked to visual objects
and events recognized by the system’s vision system. VITRA translates the output of an image
sequence analysis system of football scenes into natural language descriptions and can serve as a
football radio reporter. Such a live captioning of videos is becoming increasingly popular for live
streaming sports [18]. The user can also engage in a multi-modal dialogue with VITRA about the
ongoing football game.

SMARTKOM is one of the first multi-modal dialogue systems that was designed for mobile
devices and supports users’ on-the-go lifestyles [19]. SMARTKOM supports face-to-face dialogic
interaction between two agents that share a common visual environment: the human user
and Smartakus, an autonomous embodied conversational agent. Smartakus is a self-animated
interface agent with a large repertoire of gestures, postures and facial expressions.

SMARTKOM covers the full spectrum of multi-modal dialogue phenomena like

— mutual disambiguation of modalities
— multi-modal deixis resolution and generation
— cross-modal reference resolution and generation
— multi-modal anaphora resolution and generation
— multi-modal ellipsis resolution and generation
— multi-modal turn-taking and backchannelling

Smartakus uses body language to notify users that it is waiting for their input, that it is listening
to them, that is has problems in understanding their input, or that it is trying hard to find an
answer to their questions.

The mobile shop assistant (MSA) is an early example of an embodied dialogue understanding
system, in which humans can manipulate, and converse with physical objects in their surrounding
environment via coordinated speech, handwriting and gesture. In this dialogue scenario,
shopping items have human-like characteristics and such anthropomorphized objects include
embodied dialogue systems [20]. MSA provides a tangible user interface mediating spatially
manipulable physical objects with digital twins of these objects. For example, grasping a
particular shopping item from the shelf may start a self-introduction of the anthropomorphized
object (figure 5) as a first turn in a mixed-initiative dialogue with a customer.

VERBMOBIL [21,22] was one of the first speaker-adaptive and bidirectional speech-to-speech
translation systems for multi-lingual cell phone dialogues between four languages (English,
German, Japanese and Chinese). It has been trained on a variety of business-oriented dialogues,
including appointment scheduling and travel planning. The system integrates five processing
threads, from shallow processing based on end-to-end machine learning using transcribed natural
dialogues to deep semantic transfer based on an interlingua. Transfer rules are applied to
underspecified semantic representations for a precise translation, which is less robust than the
statistical and neural translation methods, which VERBMOBIL runs in parallel.

In VERBMOBIL’s multi-blackboard and multi-engine architecture, the results of concurrent
processing threads are combined incrementally. All results from concurrent processing modules
come with a confidence value so that statistically trained selection modules can select the most
promising result. Uncertainties are captured at each processing stage, so that they can be reduced
by linguistic, discourse and domain constraints as soon as they become applicable.

In the evaluation metrics for the dialogue translation system, the task-completion rate plays
a major role, so that the achievement of the main dialogue goal of the two human participants,
e.g. to finding an acceptable time slot for their planned meeting, is the most important criterion.
After training VERBMOBIL with 181.6 h of transcribed human dialogue, the system achieved a
task-completion rate of 90% in end-to-end evaluations with real users.
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(2) U: ‘What is
your price?’

(3) O: ‘My price is
€ 599.’

(1) O: ‘Hi, there. I’m the
new camera from Canon

with 7 mega pixels.’

Figure 5. Example of an embodied dialogue system. (Online version in colour.)

At the end of their conversation, the participants can request a written summary of the main
dialogue results in their own language. The summaries are based on the semantic representation
of all dialogue turns stored in VERBMOBIL’s dialogue memory as a by-product of the deep
processing thread. The most specific and mutually accepted decisions from the discussion are
selected to generate the multi-lingual summaries.

One of the main lessons learned from the VERBMOBIL project is that the problem of speech-
to-speech translation of spontaneous dialogue language can be tackled with the combination of
deep and shallow processing approaches.

(c) Towards open-domain and multi-party dialogue systems
When the first successful information extraction systems emerged, a first generation of open-
domain dialogue systems was implemented that were capable of answering user queries based
on information retrieved from the open web. SMARTWEB [23] was one of these systems which
combined domain knowledge represented in knowledge graphs with the results of a series of web
search commands and statistical methods for information extraction from the retrieved multi-
modal documents. If the answer to a user query cannot be found or inferred from the system’s
domain knowledge, then open-domain information extraction methods based on deep machine
learning are used. Of course, answers based on knowledge graphs come with a higher confidence
and trust level than answers based on the open web. Distinguishing features of SMARTWEB
are its introspective capabilities used for predicting how long an answer will take and which
confidence level can be expected based on experience with similar questions and the open sources
of information used. SMARTWEB [23] provides not only an open-domain question-answering
machine but a multi-modal web service interface for coherent dialogue, where questions and
commands are interpreted according to the context of the previous conversation. For example,
if the driver of our Mercedes-Benz test car asks SMARTWEB ‘Where is the closest Italian
restaurant?’ it will access a web service to find an appropriate restaurant and show its location
on a digital map presented on the large dashboard display. The user may continue his dialogue
with a command like ‘Please guide me there with a refuelling stop at the lowest price gas station’.
In this case, SMARTWEB combines a navigation service with a special web service that finds low
gas prices. SMARTWEB includes plan-based composition methods for semantic web services, so
that complex tasks can be carried out for the mobile user.
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Figure 6. Multi-party dialogues with virtual humans. (Online version in colour.)

For many years, multi-modal dialogue systems were primarily used for information-seeking
tasks or dialogic access to cyber-physical systems in the Internet of Things. However, when the
Internet of Services enabled the automatic composition of services in so-called mashups a new
task for multi-modal dialogue systems emerged. In THESEUS, the first dialogue systems for
composing new services in a multi-modal and cross-device style were implemented in a wide
range of applications [24] such as medical diagnosis based on radiological data or car insurance
services including damage appraisal.

One of the most complex spoken dialogue understanding tasks is multi-party dialogues
between more than two virtual agents and a group of humans. Our VIRTUAL HUMAN system
[25] is based on a complex agent-based dialogue management platform, which allows multi-
modal turn-taking as well as emotional involvement in controversial and argumentative group
discussions. One of the demonstration scenarios for multi-party dialogue understanding of the
VIRTUAL HUMAN system allows two human candidates to take part in a football quiz in a
virtual sports studio (figure 6).

The three virtual characters take on two different roles: that of a moderator and that of two
football experts who help the human candidates by giving hints. Just as in a TV quiz, the real
and the virtual participants can discuss among themselves, ask for help and answer questions.
In the studio, the characters behave like actors following independently the stage directions that
guide the narration. For each character, dynamic dialogue goals are set up that fit that character’s
role. While pursuing these goals, the characters plan their multi-modal behaviour autonomously.
Depending on the course of the interaction, the moods and emotions of the characters change. Just
as with humans, the affective state of the characters is reflected in their body language including
gestures, facial expressions and colouring, which is rendered in real time for each animated virtual
character.

Today, cyber-physical environments are omnipresent, for instance as smart homes, cars,
shopping environments, business facilities, Industry 4.0 factories and smart cities. Characterized
by a large number of individual systems and devices with their sensors and actuators,
the interaction paradigm from the user’s perspective is shifting towards system-environment
interaction. Following this principle in MADMACS [12], a single user or user groups can freely
choose an interaction modality to address the environment, which responds in a multi-adaptive
manner. This new interaction paradigm requires massively multi-modal dialogue platforms such
as SiAM-dp [26], which offers a free choice of up to nine different modalities in any combination.
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cobot

softbot

Figure 7. Softbot and cobot dialogues for worker assistance. (Online version in colour.)

In the new generation of smart factories, dialogue understanding plays a major role in the
communication between human workers and robots or softbots. Industry 4.0 [27], the fourth
industrial revolution, requires hybrid teams of workers and collaborative robots with different
skill sets enabling mass customization of products in highly adaptable production environments.
A new form of team robotics is needed that focuses on human–machine interaction led by
skilled human workers. To solve complex manufacturing tasks, they work hand in hand with
robots as a team, that plans and acts together [28]. In our HYSOCIATEA system [29], softbots
(i.e. software robots that act as intelligent communicative agents) give cognitive assistance for
new assembly tasks in addition to physical worker assistance provided by cobots. As shown in
figure 7, these worker assistants are often visualized as animated characters that serve as multi-
modal dialogue partners. Since hybrid teams must agree on a particular task allocation to the
robots, softbots and humans, they use spoken multi-modal dialogue to agree and commit to
certain tasks. In HYSOCIATEA, a blackboard is used in a multi-agent architecture for dialogue
management.

3. Large neural languagemodels: super-parrots or human-like understanding?
Recently, LLMs have become important tools for realizing scalable AI systems for natural
language understanding in open-domains. LLM-powered language generators are now able to
produce snippets of text that are often difficult to distinguish from human-written text. This is
undoubtedly a significant advance in natural language processing and generation.

Dialogue Systems such as LaMDA (short for ‘Language Model for Dialogue Applications’,
Google [30]) or ChatGPT (GPT short for ‘Generative Pre-trained Transformer’, OpenAI [4])
attempt to answer the user’s questions about everything under the sun, write essays on any topic,
tell stories, explain jokes, solve math word problems and perform other increasingly varied and
complex tasks in conversation with a human user.

The dialogue format makes it possible for systems like ChatGPT to answer follow-up
questions, admit their mistakes, challenge incorrect premises and reject inappropriate requests.

Unlike most previous natural language dialogue systems, discussed above, they respond very
quickly. This enables a fluent and coherent dialogue with the human user.

However, LLM-powered dialogue systems such as LaMDA, PaLM (Google [31]) or   
ChatGPT have not yet achieved human-like dialogue understanding and behave more like 
‘super-parrots’ because they do not have an explicit representation of the communicative intent 
of their
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utterances [32,33], have only a very limited grounding of meaning in the physical world, and
are unable to deal with complex meta-dialogues due to their very limited introspective and
metacognitive capabilities. Talking birds such as parrots are animals that can imitate human
speech, some up to 2000 words. But LLMs such as LaMDA are trained with 1.56 trillion words so
that they cover the entire vocabulary of native speakers of a language.

(a) ChatGPT’s output is not easily distinguishable from dialogue contributions of humans
ChatGPT (Generative Pre-trained Transformer) is built on top of the GPT-3 family of large
language models. It is fine-tuned with both supervised learning based on annotated dialogues
between human AI trainers and reinforcement learning techniques based on user feedback. The
basic training was performed on 570 gigabytes of data obtained from books, web texts, Wikipedia
articles and other documents on the Internet. In sum, 300 billion words were fed into the system.
The GPT-3 LLM of OpenAI has 175 billion parameters, derived from 45 terabytes of training
data parameters with a memory size of the model exceeding 350 gigabytes, and close to $12
million in compute costs. An efficient initial training of LLMs is only possible on massively
parallel supercomputers based on Graphical Processing Units (GPUs) provided by NVIDIA
or Tensor Processing Units (TPUs) provided by Google. In machine learning terminology, a
parameter is a value that can be adjusted in a neural model to optimize its performance.
In the case of ChatGPT, the model’s 175 billion parameters were learned during the training
process. These parameters include the weights of the neural network’s connections, which
determine how much influence each input has on the output. The parameters also include
the biases of the neurons in the multi-layered neural network in an advanced transformer
architecture.

Although the use of LLMs for dialogue systems is at a very early stage so that there is not
enough empirical evidence, it seems that, based on current technology and electricity prices,
each chat costs ‘single-digit cents’. It is therefore reasonable to speculate that serving just 100
million chats per month could cost millions of dollars. However, with dedicated hardware
accelerators beyond GPUs and TPUs, as well as more efficient algorithms for the deployment
phase that puts an LLM into production after the training phase, the cost can certainly be
reduced.

LLM-driven dialogue systems often repeat back segments of the texts they have been trained
on, so that they are often criticized as ‘super-parrots’. But because they probabilistically select
relevant words or text snippets from the language model, they don’t engage in simple plagiarism.

Google’s recent PaLM system, with 540 billion model parameters, was built by fine-tuning
Transformer-based neural language models trained on 6144 TPU chips as ASICs for accelerating
highly parallel machine learning tasks. However, unlike GPT-3, PaLM is not an open-access
system. The question remains whether the number of model parameters is a good metric for
the quality of LLMs or whether the training computational budget or the average perplexity are
better proxies.

However, it is interesting to note that when trying to solve math word problems such as ‘Tom’s
ship can travel at 10 miles per hour. He is sailing from 1 to 4pm. He then travels back at a rate of 6
mph. How long does it take him to get back?’ with a 62 billion parameter model PaLM generates
the wrong answer ‘18 h’, whereas the 540 billion parameter model generates the correct answer
‘5 h’ [31].

Convincing evidence that the output produced by systems such as ChatGPT is formally of high
quality and not always easily distinguishable from texts written by human authors is, ironically,
the ban on their use for submissions to a leading machine learning conference. The Program
Chairs of the International Conference on Machine Learning, ICML 2023, have banned papers that
include text generated by LLMs in the Call for Papers (see https://icml.cc/Conferences/2023/
CallForPapers): ‘Papers that include text generated from a large-scale language model (LLM)
such as ChatGPT are prohibited unless this produced text is presented as a part of the paper’s
experimental analysis.’

https://icml.cc/Conferences/2023/CallForPapers
https://icml.cc/Conferences/2023/CallForPapers


12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220049

...............................................................

(b) Large language models with more computational units than the human brain?
Neurons are the computational units of the brain. An adult male human brain has an average
of 86 billion neurons. But it would be wrong to conclude that then PaLM, with its 540 billion
model parameters, has more computational power than the human brain, because each neuron
has, on average, about 7000 synaptic connections with other neurons and a total of about 100
trillion synapses. Synaptic connections are an essential part of the human brain’s information-
processing engine. LLMs with 100 trillion synapses are still a long way off. Of course, only
parts of the brain are involved in understanding and producing speech or language. But with
today’s brute-force approach to deep learning on massively parallel machines, training a model
with 100 trillion parameters would be extremely resource-intensive in terms of hardware and
power.

By contrast, the human brain is powered only by 20 Watts and energy consumption is only 6
kcal/day per billion neurons. It consumes 20% of the total body energy budget [34].

Language processing in the brain is organized in several cascaded modules, some of
which are likely to work in parallel [35]. Acoustic-phonological processes take place during
the first 100 ms after acoustic stimulation. Semantic and syntactic relations in a sentence are
processed between 300 and 500 ms after the stimulus onset, possibly in parallel systems.
Syntactic and semantic integration processes take place approximately 600 ms after the stimulus
input and beyond. Thus, the simple end-to-end transformer architectures of LLM-based
dialogue understanding are not in line with the physiological and cognitive findings in
neuroscience.

(c) Some limitations of ChatGPT
The developers of ChatGPT have placed a great emphasis on educating users about the limitations
and potential dangers of gullibly accepting texts produced by the system. They point out in
their user guidelines that it is important to keep in mind that the output may sometimes be
inaccurate, untrue, and otherwise misleading at times as this is a direct result of the system’s
design (i.e. maximizing the similarity between the output and the dataset on which the models
were trained). ChatGPT will occasionally make up facts or ‘hallucinate’ outputs. ChatGPT does
not have access to the Internet, search engines, databases or any other sources of information
outside of its own model. So it cannot verify facts or provide references to relevant new sources
of information. If you ask for today’s train schedule, it will reply ‘I don’t have the up-to-date
information about the schedule of trains, as my knowledge cut-off date is 2021’.

While ChatGPT has a very simple discourse memory, there is a limit to how much information
it can retain (approximately 3000 words from the current conversation). Ideally, the ChatGPT
would ask clarifying questions when the user entered an ambiguous query. In our tests with
PP-attachment ambiguities, ChatGPT (January 2023 demo release) did not ask clarification
questions, when multiple readings of a user query are possible. In the following examples of
question-answer turns, ChatGPT seems to work with the two readings caused by the ambiguous
attachment of ‘with a gun’, whether the man killed by the police was armed with a gun (see 2) or
the police officers killed the man with a gun (see 4). However, the user is not asked a clarification
question.

(1) User: Short response please. Did Cops kill a man with a gun?
(2) ChatGPT: Yes, it is possible that police officers have killed someone who was armed with

a gun in certain circumstances. The justification of the use of force would depend on the
specific circumstances of the case, and it is subject to investigations and legal process.

(3) User: Can Cops kill a man with a gun? Short response please.
(4) ChatGPT: Yes, under certain circumstances, police officers may use deadly force,

including shooting someone with a gun, if they perceive an imminent threat of death
or serious bodily injury to themselves or others.
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(5) User: Why have you picked the meaning that the police officers used a gun in my last
query? Short answer please.

(6) I interpreted your last query to be asking about the possibility of police officers using a
gun to kill someone, as that is what you have been asking in previous questions.

It’s also interesting to note that ChatGPT does not use the colloquial term ‘cops’ in its answer,
but the politically correct term ‘police officer’.

Metacommunicative questions about the system’s interpretation of user input (see 5) are
answered, but they do not provide a convincing explanation of why a particular reading of the
attached prepositional phrase was picked (6). However, the phrase ‘in my last query’ in (5) is
interpreted correctly, based on ChatGPT’s simple discourse memory.

4. Concluding remarks: architectural insights and grand challenges
for future research

The research discussed in the previous sections on a wide variety of dialogue system prototypes
has provided some fundamental insights into adequate system architectures which, after a
long test-of-time, are still valid today for the design of future advanced multi-modal dialogue
systems. Two of these principles will be discussed in the first two paragraphs (a) and (b) of
this section, before we give an outlook on grand challenges for future research in dialogue
systems.

(a) Theprinciples of symmetricmulti-modality andnopresentationwithout representation
for dialogue understanding

A central notion for advanced dialogue systems is symmetric multi-modality, where all input
modes (e.g. speech, gestures and facial expressions) are also available for output, and vice versa.
A dialogue system with symmetric multi-modality must not only understand and represent
the user’s multi-modal input, but also its own multi-modal output [36]. Only mixed-initiative
dialogue systems with symmetric multi-modality create a natural experience for the user in the
form of everyday human-to-human communication, by allowing both the user and the system to
combine the same range of modalities.

When the generation component generates some graphics or displays images and videos on
the screen as part of its response to a user input, the dialogue system needs to have a symbolic
representation of the current screen content and the intended dialogue act, to be able to refer
to it in the next dialogue turns. Without such a representation of the generated multi-modal
presentation, the user’s anaphoric, cross-modal and gestural references could not be resolved.

Furthermore, multi-modal turn-taking, back-channelling and metacommunicative interaction
as important components of human-like dialogue behaviour can only be realized if the principle
of representing the communicative intent of all utterances of the dialogue partners in the
discourse memory is followed.

Multi-modal fusion maps the combined output of the mode-specific analysis components
onto an internal representation of the intended dialogue act [37]. The modality fission
component provides the inverse functionality of the fusion component (figure 8). It is responsible
for the situation-aware allocation of mode-specific generators to segments of the intended
communicative act and for the synchronization of their multi-modal output. Multi-modal fusion
enables a reduction of uncertainties and a mutual disambiguation of the components of a multi-
modal utterance in dialogue understanding by excluding non-sensical combinations of possible
interpretations. Symmetric multi-modality is a fundamental design goal for human-like dialogue
behaviour, which is difficult to achieve today, because existing mode-specific generators, e.g. for
facial expressions, do not yet reach human levels.
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Figure 8. Multi-modal fusion and fission. The flow of information from the user’s multi-modal input to an internal symbolic
representation andback to amulti-modal output as the system’s communicative reaction is central to symmetricmulti-modality
based on semantic fusion and fission components for a wide range of modalities.
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Figure 9. Anticipation feedback loops. The graphics shows the dialogue partnermodel as a prerequisite for tailoring a planned
utterance to an individual user. The loop is repeated until the anticipated communicative intention has reached a maximum
degree of similarity with the intention of the system.

(b) Anticipation feedback loops for user-adaptive behaviour of dialogue systems
A declarative representation of the communicative intention of a planned utterance is also
an important prerequisite for the simulation of user-adaptive utterance generation based on
anticipation feedback loops as control structures in human-like dialogue systems. The basic
idea behind anticipation feedback is to use the system’s analysis components during the
system’s utterance generation process (figure 9). The aim is to avoid misunderstandings and
communication failures when the intended dialogue act is not successful in a given discourse
situation. Before the system realizes a planned utterance, it checks whether the anticipated
interpretation s2 of the dialogue partner approximately corresponds to its communicative
intention s1 (see 5 in figure 9). If not, the generation component is called again to replan the
utterance.

To simulate the dialogue partner’s interpretation of a planned utterance the system uses
its user model, which it has built up during the current conversation or previous interactions
with this particular dialogue partner. This means that anticipation feedback loops are based on
the implicit assumption that the system’s language analysis and interpretation procedures (but
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not necessarily the content of the sources of knowledge used by these procedures) are similar
to those of the user. Since most people cannot be assumed to have an accurate model of the
comprehension capacity of their dialogue partners, it is plausible that they use the similarity
assumption as a default rule in everyday conversation [10,16]. Although the current state of the
art in dialogue systems by no means provides sufficient evidence for assuming a far-reaching
similarity, anticipation feedback loops can considerably improve the quality of present dialogue
systems.

During the last five decades such anticipation feedback loops were used to cope with a variety
of phenomena in many dialogue systems, such as the generation of ellipsis and anaphora in
HAM-ANS [38], the generation of deictic expressions combined with pointing gestures in XTRA
[15], the generation of spatial descriptions in VITRA [17] and the generation of paraphrases
[39]. Currently, similar ideas are used in systems that apply Deep Reinforcement Learning for
paraphrase generation [40].

(c) Extensions to more human-like dialogue situations
Although enormous progress has been made in the last five decades in the breadth of coverage
of natural dialogue phenomena, there is no system today that can handle all complex dialogue
situations in a human-like manner.

We currently see seven major research trends for the next generation of computational dialogue
systems, all of which realize a shift from a simpler task to a more complex conversational setting:

— from closed-domain to open-domain dialogue systems
— from single-initiative to mixed-initiative dialogue systems
— from unimodal to multi-modal dialogue systems
— from single-task to multi-task dialogue systems
— from monolingual to multi-lingual dialogue systems
— from dyadic dialogues to multi-party conversations
— from emotionless dialogues to emotionally charged conversations

Two other trends of a more methodological nature have been increasingly adopted in dialogue
research over the last five years:

— The move from black-box dialogue processing to transparent dialogue systems, that can
explain their own processing architecture, knowledge sources and their limitations in
order to become a trustworthy conversational assistant

— Moving from purely symbolic or neural methods to hybrid neuro-symbolic methods that
combine the best of these two approaches for advanced dialogue systems

The scalability of neural language models based on deep learning is a clear advantage for open-
domain applications [6]. They clearly outperform previous approaches on most international
benchmarks. However, there are not enough publicly available large annotated corpora for
building data-driven multi-modal dialogue systems [41]. The high computing and memory
requirements and the associated huge energy consumption for the training phase of deep learning
make the current approaches implausible as models of human-like dialogue understanding, at
least from the perspective of cognitive science and brain science.

The ultimate AI system that can serve as a ubiquitous conversational partner must be able to
handle all these different extensions.

(d) Chatbots trying to satisfy Grice’s conversational maxims
Paul Grice in his essay ‘Logic and Conversation’ introduced his well-known Cooperative
Principle for dialogue behaviour, according to which a speaker should make his contribution such
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as is required by the accepted purpose or direction of the dialogue in which he is engaged, at the
stage at which it occurs [42]. He introduced four conversational maxims, which will generally
produce results in accordance with the Cooperative Principle:

— Maxim of quantity: be informative
— Maxim of quality: be truthful
— Maxim of relation: be relevant
— Maxim of manner: be clear

Grice’s maxims are much too vague to be implemented directly in a dialogue system, but there
are early implementations in some of the systems discussed in §2, which are based on algorithms
inspired by some of these maxims for specific generation tasks. For example, the answering
of why-questions in the early HAM-RPM dialogue system [43] or the generation of referring
expressions in the IDAS system [44] adhered already to the Gricean maxims.

Today, even tutorials for the professional design of commercial chatbots recommend taking
Grice’s Conversational Maxims into account as useful conversation design tips to create more
natural conversation flows and improve the customer experience [45].

When chatbot dialogues are generated based on machine learning of large language models,
as in Google’s LaMDA system [30], metrics are used to guide the training phase. We found
that LaMDA’s quality metrics are very similar in their spirit to the Gricean maxims. For
example, Sensibleness, Specificity and Interestingness (SSI), which are scored by human raters,
are dimensions used for the quality metric. Sensibleness refers to whether the model produces
responses that make sense in the dialogue context (Maxim: Be relevant). Specificity is measured
by judging whether the system’s response is specific to the preceding dialogue context, rather than
a generic response that could apply to most contexts (Maxim: Be clear). Interestingness measures
whether the model produces responses that are also insightful, unexpected or witty (Maxim: Be
informative).

The LaMDA classifiers are trained to predict the SSI ratings for the response candidates
proposed by the LaMDA generator. The LaMDA generator is trained to predict the next token on
a dialogue dataset. For a given multi-turn dialogue context, the LaMDA generator first generates
several candidate responses and then the LaMDA classifiers predict the SSI scores for each
candidate response. The candidate utterances are ranked according to their SSI scores, and the
top result is selected as the response. This means that the prioritized output utterance at least
approximately satisfies the Gricean maxims.

(e) Supporting ubiquitous multi-linguality for dialogue understanding systems
For many of the languages spoken in Europe (24 official and 10 co-official EU languages), the
digital tools and services needed for natural language dialogue systems (e.g. software for speech
and text processing, translation and natural language generation) are not supported or only to
a very limited extent (e.g. for Irish or Maltese as official EU languages and Basque or Catalan
as regional co-official EU languages). A major obstacle to the use of large language models in
dialogue understanding systems is the lack of open language resources for machine learning, fine-
tuning and evaluation for many European languages. For example, open multi-modal corpora for
languages such as Slovenian, Greek and Hungarian do not yet exist in a sufficient quantity and
size (see [46] p. 164]).

The main digital language technologies and corpora are only available for English at a 
satisfactory level. For German, French and Spanish, there is a moderate support, which compared 
to English is not yet sufficient. For the rest of the official or co-official languages, the situation is 
unsatisfactory and not in line with the European Language Equality Act [46]. Fortunately, in the 
EU, the Parliament supports multi-lingualism as a positive asset for the continent and supports 
the ambitious long-term goal of establishing digital language equality in Europe by 2030.
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In many countries outside of Europe, the situation is often worse, as there is only marginal
support for digital language technologies and many of these small language communities in
Africa, South America or Asia are at risk of digital language extinction. One of the grand
challenges is to develop multi-lingual digital language tools and dialogue technologies so that
in the medium term multi-modal dialogue understanding systems become available for all of the
more than 7000 different natural languages in the world.

Promising research directions to address this problem are new resource-efficient training
methods, in particular transfer learning approaches. A new cross-lingual and progressive learning
(CLP-Transfer) approach, which uses a large and pre-trained model in a source language (e.g.
English), helps to generate a model of the same size in a target language (e.g. German), which is
not trained from scratch. Instead, the overlapping vocabulary of the source and target languages
is used to initialize the transfer learning process for the large target model [47]. Only a small
pre-trained model of the target language is used, with much fewer parameters than the large
model of the source language. Since the vocabulary overlap between German and English is
significant, the CLP-Transfer achieves an 80% reduction in training effort compared to training
from scratch for the same model size. Using the publicly available BLOOM LLM for English, the
openGPT-X project derived a 6.4 billion parameter model for German using the CLP-Transfer
method, achieving training efficiency by exploiting publicly available LLMs for other languages.

Although transfer learning of a new language is a promising approach, human children cannot
acquire a language simply by listening to it. According to [33] the process of acquiring a linguistic
system, like human communication in general, relies on joint attention and intersubjectivity: the
ability to be aware of what other humans are attending to and guess what they are intending
to communicate. Human language learning is thus an interactive process, and conversational
machine learning is a promising research trend for dealing with languages that lack digital
resources. It is important to understand the limitations of current large language models, put
their success in dialogue systems in context and reduce the hype [32].

Two of the important aspects of dialogue understanding (e.g. for textual entailment) on which
LLMs perform poorly today are logical reasoning and its explanation for deductive and inductive
inference tasks. However, recent research [48] has shown that using a neuro-symbolic approach,
it is not impossible to create multi-step reasoning and to generate inference traces in natural
language that are easy for humans to interpret. But there are many open questions, such as when
to stop the reasoning process in the LLM, how to reduce fine-tuning, and how to avoid false
inferences.

While SHRDLU was able to explain its closed-domain responses to the user input, most of
today’s open-domain systems are unable to do so. The limited trustworthiness of these systems
due to the lack of an explanation component is therefore a fundamental challenge for applications
that have a critical societal impact. While neural systems can be easily integrated with machine
learning and provide scalable and robust dialogue behaviour, symbolic systems can be easily
integrated with logical reasoning and provide explainable and trustworthy dialogue behaviour.

This is the way forward: to achieve more human-like behaviour from dialogue systems, we can
use interactive machine learning with human trainers to gradually expand the communicative
capabilities of these systems and implement them as hybrid neuro-symbolic systems for advanced
dialogue understanding.
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